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SUMMARY 
A two-dimensional model for the cochlea is developed. An integral equation is derived that describes the pressure 
difference between the scalae. For the main quantity, the transmembrane pressure, an ordinary differential equation 
is obtained, which appears to be an improvement of the well-known Peterson-Bogert equation. The results are 
.valid for all frequencies; an assumption of long or short wavelengths is not necessary at all. 

1. Introduction 

During a long period mathematical models of the cochlea have been basically one-dimensional 
[4, 7, 17, 18]. The reasons for this are obvious: the length of the cochlea, i.e. the distance 
from the windows to the helicotrema, is very large compared to the diameter of a scala 
( ~  3.5 cm and ~ 0.1 cm respectively), while the computations are substantially more simple 
in the one-dimensional case. The implication is the neglect of any other than axial particle 
velocity in the fluid. The deviations as a consequence of this simplification were assumed 
to be negligible. The authors showed [14] that this is correct for large values of the partition 
impedance, which corresponds with low frequencies of the input signal. For high frequencies 
the one-dimensional model is inaccurate; then the cross-sectional dimensions are no longer 
small in comparison with the length of the generated waves. 

Ranke is the only investigator who developed short-wave theories. In the summary of his 
work [9] he also discussed the difficulty of an analysis of the three-dimensional fluid 
interaction with the basilar membrane. 

Only recently attention was drawn to more-dimensional models. Steele [13] designed a 
three-dimensional model of which the scala walls are tapered and used the taper angle 
as a small parameter for an asymptotic expansion of perilymph and basilar membrane 
motion. The main feature of his model however, is the independent motion of the arches 
of Corti and the remaining portion of the basilar membrane. He obtains results in both 
short-wave and long-wave regions. Lesser and Berkley [6] and very recently Siebert [11] 
and Van Dijk [3] set up two-dimensional models using a method somewhat similar to 
the one we will outline in the sequel. The purpose of our work was to develop a two- 
dimensional model and to compare the results with those of one-dimensional models. In the 
appendix, it is shown that the neglect of variations in the direction along the width of 
the membrane does not alter the character of the solution, whereas the neglect of variations 
in the direction perpendicular to the partition causes essential deviations of the exact solution. 
This explains why we chose for a two-dimensional model. 

2. The model 

Peterson and Bogert [2, 7] designed a modei for the cochlea, against which one of the main 
objections is that the vertical particle velocity in the perilymph (that is, the velocity component 
in the direction of the membrane deflection) is neglected. In the introduction it was stated 
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already that this can be a good approximation only for long waves; these occur in the 
cochlea for frequencies < 1 kHz (see [13]). For high frequencies the one-dimensional approach 
is inadequate. 

We have made an attempt to meet this objection by means of a two-dimensional model 
in which the axial and vertical directions are taken into account. Variations in the third 
direction, that along the width of the membrane, are likely to be small and besides of 
little interest to the motion of the partition, in which we are above all interested. 

In this work we confine ourselves to linear phenomena; the driving forces and the resulting 
responses are taken to be so small that non-linear effects are excluded. In addition three 
a priori assumptions are introduced: the spiral coiling can be dispensed with, the scalae 
walls are rigid and all parts of the scala media (Reissner's membrane, endolymph, tectorial 
membrane, organ of Corti, basilar membrane) move in unison. The reasonableness of these 
hypotheses is shown by Von B6k&y [1], although especially the third is open to doubt in 
our opinion (cf. [13, 15]). Two minor simplifications are made; their principal importance 
lies in the facilitation of the calculations. First, the heights of the scalae are taken to be 
equal and constant, which according to Wever [16] is correct in relation to the other, rapidly 
varying, quantities except at the basal end; second, the cochlea is extended to infinity, as 
has been done before by Klatt and Peterson [4]. Then the cochlea can be represented by Fig. 1. 

h 
k oval 

Y window 
0 

round 
window 

- h  

scala vestibuti 
heticotrema 

cochlear partition 
scala ~yrnpani 

Fig.1. 

The fluid is considered to be incompressible and inviscid. The former assumption is correct 
except for frequencies over about l0 kHz, the latter has a small weight as to membrane 
motion, though it could affect considerably the creation of vortices in the perilymph near 
the point of maximum membrane amplitude [ 14]. We will pay attention to the compressibility 
and to the viscosity in a later paper. 

Let x and y be the axial and vertical coordinate respectively (x=0  at the windows, 
y = 0  at the partition, y=  +h  at the walls); t is the time variable. Denote by/~(x, y; t) and 
~(x, y; t) the pressure and the velocity in the perilymph and by p its density. In view of 
the foregoing the continuity equation reads 

V.~5=0, 

and the equation of motion is given by 

p~t +V/~ = O. 

(2.1) 

(2.2) 

Subscripts denote partial differentiation with respect to the variable involved. We take into 
account only harmonic oscillations of the input signal of frequency ~o/2~r. Thus we set 

~(x, y; t )= v(x, y)e i~' , 

fi(x, y; t )= p(x, y)e i~ . 

(2.3) 

(2.4) 

Our main interest is the displacement of the partition. Hence we define the difference 
pressure P by 

P(x, y)=pSt(x, -y ) -pSV(x ,  y), (y>0)  (2.5) 
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in which the indices st and sv stand for scala tympani and scala vestibuli respectively. 
It can be deduced from (2.1)-(2.5) that 

P~x(X, y) + Pyy(x, y) = 0.  (2.6) 

Since P(x, y) is defined for y >0, we can confine ourselves to look upon the scala vestibuli; 
it is represented as an infinite strip in the z-plane (Fig. 2), when z=  x+jy is a complex 
variable. We emphasize the difference between i- and j-complex. 

0 
B A 

roof 
oval 
window 

cochlear part i t ion 

Fig.2. 

D 
y 

heLicotrema 

The next step is the determination of the boundary conditions for eq. (2.6). The first is 
found from the vanishing of the y-component of the velocity on the roof. With the aid 
of (2.2), (2.4) and (2.5), this leads to 

Py(x, h) = 0.  (2.7) 

The window condition can be given in various forms. Mostly the difference pressure P(0, y) 
just inside the cochlea is prescribed, sometimes its normal derivative Px(0, y), which is 
proportial to the axial difference velocity, or the ratio between P(0, y) and Px(0, y). These 
conditions are afflicted with the objection that they are all unrealistic; better, if less easy 
to acquire, would be a relation between the pressure difference across the windows and 
the axial difference velocity at x=0.  The difficulty here is that we want to avoid the 
appearance in the equations of any other pressure than P(x, y). To this end we set that 
the stapes exerts a pressure p,(y) upon the oval window; knowing that the middle ear does 
not exert a pressure upon the round window, we see that Ps(Y) is the middle-ear analogue 
for P(0, y). Hence we find for the equilibrium at the windows 

Ps(Y)- P(O, y) = Z(y) Px(O, y), (2.8) 

where Z(y) is the difference impedance of the windows. It cannot be expressed in terms 
of the distinct impedances of oval and round window, unless these are equal. In that case 
Z(y) is equal to both impedances. When Z(y) cannot be ascertained, we use the alternative 
window condition 

Px(O, y) = f(y) ,  (2.8.a) 

where f(y) is a known function. The physical interpretation of this is that the axial difference 
velocity at x---0 is prescribed. 

The boundary condition at the partition has the same form as (2.8). It is assumed that 
the membrane moves only as a result of the pressure difference between the scalae. When 
#(x, t ) i s  the membrane velocity and m(x), k(x) and c(x) are mass, resistance and stiffness 
of the membrane per unit area, we obtain 

P(x, O)= m(x)~,(x, t)+ k(x)~v(x, t)+c(x) Vv(x, t)dt. (2.9) 

The following relation holds, since only harmonic oscillations are considered: 
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#(x ,  t) = w(x)e  '~ . (2.10) 

With the help of(2.10) and the relation between w(x)  and P~(x, 0), eq. (2.9) can be written as 

2P(x, 0) + 0) = 0 .  (2.11) 

Here ~(x) is the impedance of the hochlear partition: 

; (x)  = [ c ( x ) -  co z m(x) + kok(x)]/(pcoz).  (2.12) 

Finally, we have the condition 

LimP(x,  0 ) =  0,  (2.13) 
xm~oo  

for, at the helicotrema all static pressure variations are equalized because of the direct 
contact between the scalae. 

Summarizing, we have to find a function P(x, y), harmonic in the interior of an infinite 
strip in the complex z-plane, and satisfying the conditions (2.7), (2.8), (2.11) and (2.13). 
The solution of this problem can be found easily with the method of separation of variables, 
as has been done in [14]. A necessary condition for the existence of this solution is, however, 
that the impedance of the cochlear partition, given by (2.12), is independent of the axial 
coordinate x. Since this would be a far too drastic simplification, we try to tackle the 
problem in such a way that this restriction can be avoided. To this end the region in the 
z-plane is mapped conformally on to the upper half of a w-plane ( w = u + j v )  such that the 
boundary of the strip is mapped into the u-axis (see Fig. 3). The primed points A', B', C', D' 
correspond to the unprimed A, B, C, D in Fig. 2. 

A ~ B ~ 
v roof  -1  win( 

| 

C 1 D 1 

ows :1 par t i t ion  "her. 

F i g . 3 .  

The required transformation is 

w = coshQtz/h),  

with the inverse transformation 

z = h/~ arccosh w = h/~ In (w+(w 2 -  1)~). 

(2.14) 

(2.15) 

The branch of the logarithm is determined by z = 0 when w = I, that of the square root 
by (w e -  1) } > 0  when w is real, w > 1. 

Denote the image of P(x,  y) in the w-plane by Q(u, v). The conditions that Q must 
satisfy are derived by straightforward calculations from (2.7), (2.8), (2.11) and (2.13). Herewith 
are employed the relations 

P~ = Q,u~+Q~vx,  Pr = Q,u ,+Qvvr ,  (2.16) 

together with the expressions for u and v that can be deduced from (2.14): 

u = cosh(rcx/h) cos(roy/h), v = sinh(zcx/h) sin(roy/h). (2.17) 

Setting that Ps(Y), Z(y) and ~(x) are transformed into )~(u), ~/(u) and 0(u), the problem 
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can be formulated as follows: To find a function Q(u, v), harmonic in the upper half of 
the w-plane with the exception of the real axis and satisfying on this axis the conditions 

Q v = 0 ,  - ~ < u <  - 1 ,  (2.18) 

hQ hz 
2 I - , - 1  < u <  1, (2.19) 

Qv + rc(1-u )~t I n(1-uZ)~rl 

2hQ (2.20) Q~ + n(u2 _1)~_ ~ -  0,  1 < u <  oo, 

{2 = o ,  u (2 .21 )  

We impose on g,(u) the restriction that (2.21) is automatically satisfied when (2.20) is satisfied. 
Then we have a mixed boundary value problem for the real axis, since (2.18)-(2.21) pass into 

Q~(u, 0)+ a(u) Q(u, O) = b(u) , (2.22) 

with e(u) and b(u) piecewise continuous functions, which are indeterminate in the isolated 
points u = - 1 and u = 1 only. 

The solution of the problem can be expressed in the form of a logarithmic potential [8] 

Q(u,  v) = - F ( ~ ) l n l u - a + j v l d a  ,* (2.23) 
- - o o  

where F(o-) is a real-valued function of a that satisfies the integral equation 

- n F ( a ) -  i ~ a (a)F( t ) ln la - tJd t=b(a)"  (2.24) 

For, consider Q(u, v) as the real part of a complex function s 

O(w) = - F(a)  l n ( w -  a )da .  (2.25) 
- - c O  

Its derivative with respect to w reads 

da ,  (2.26) 
dw J -m W--r7 

from which we get 

8Q imd(2 foo . vF(a) 
~7 = -- -dw = - --o~ (u-~)2 + v ada.  (2.27) 

When Fsatisfies the rather weak restriction 

f ~ [F(a)lda < +oo,  (2.28) 
_~  1 +  Io-I 

it holds that, for any continuity point u of F (see [5]), 

F(u) = Lim~_~0 . (u_a)2 + v 2 da , (2.29) 

which, substituted in (2.27) gives 

Q~(u, O) = - nF(u), (2.30) 

again for any continuity point of F. 
Insertion of (2.30) and (2.23) into (2.22) leads to (2.24). 

* The integrals in this section are to be viewed upon as principal value integrals, when there is a singularity 
on the path of integration. 
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We are interested in the values of Q at the window and especially at the cochlear partition. 
The values of the pressure and the velocity in the interior of the fluid are less important. 
The determination of the interior values encounters, however, no insurmountable difficulties 
and can therefore be done, if required. 

Now eqs. (2.23) and (2.24) can be combined into 

~V(u) = a(u) Q(u, 0 ) -  b(u) , (2.31) 

leaving the integral equation 
1 r176176  

Q(u, O) = - 7 J _ ~  [a(o)Q(a, O)-b(a)] ln lu-a[da  (2.32) 

Substituting the values of a(a) and b(a) at the distinct intervals, we arrive at 

h 11 Q(r ~ 2h( *Q(r162 (2.33) Q(u, 0 ) =  - ~ -~ ( 1 _ ~ ) ~ ( ~ )  - ~ J ~  ( ~ - l ) ~ O ( ~ )  

Returning to the original coordinates and noting that 

Q(cosh(~rx/h), 0) = P(x, 0), 

Q(cos(~y/h), o)= p(o, y), 
~b(cosh(:rx/h)) = r 
z(cos(~y/h)) = ps(y), 
tl(cos(rcy/h) ) = Z(y) , 

we obtain the integral equations 

1 (" h. 
P(O, y) = 7c :~|.=o p~(e)- P(O' e) lnlc~176 de + 

z(e) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

P(x, O) = 

B=O 
P(fl, 0)ln(cosh (~zfl/h)-cos(rcy/h) )dfl , 

~(~) 

ps(e)- P(O, e) ln(coshQrx/h)- cos(Tee/h))de + 
z(e) 

(2.39) 

2(~ p(fl, O) ln lcosh ( ux/h ) -  cosh ( rcfi/h )l d~ . (2.40) 
- 7 ) ~ : o  ~(/~) 

From eqs. (2.39) and (2.40) the pressure difference along the windows and the basilar 
membrane can be solved. The singularities in the integrals are logarithmic and hence present 
no great difficulties in the calculations. When it is impossible to determine Z(y), (2.8.a) 
is used instead of (2.8); then [ps(e)-P(O, e)]/Z(e) must be replaced by f (e )  in both 
(2.39) and (2.40). 

3. Comparison with a one-dimensional model 

In this section we will investigate whether the described two-dimensional approach leads 
to an improvement of the well-known one-dimensional models. First off it is clear that 
the values of the pressure difference along the windows and in the interior of the fluid 
will be more realistic than the corresponding values in the one-dimensional case, where 
uniformity of all quantities over the cross-section of the scalae has been assumed. Our main 
interest, however, is the motion of the basilar membrane. To make a comparison with 
the one-dimensional models, we try to derive an ordinary differential equation for the 
variable P(x, 0) from (2.40). 
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We set 

11 = ~1 fh~=o p~(~)-P(O,z(cO cO ln(cosh(rcx/h)-cosOzc~/h))dc~ , (3.1) 

2.1 oo p(fi, O) ln lcosh(~x/h)- cosh0zfi/h)l dfl . (3.2) 
6 = - ~ = o  ~(~) 

We differentiate 11 twice with respect to x and find for x v~ 0 

d211 rc (h p~(cO-p(o,c 0 1-cosh(rcx/h)cos(zcc~/h) 
dx 2 - -~ )~=o Z(c0 [cosh(rcx/h)_cos(rcc~/h)]2 do~, (3.3) 

so that 

d2h O(e -'~/h) as x--, oo (3.4) 
dx2 - 

Besides we find 

2 ~ ~ 7~ 
12= - -  ~-f~= o P(fl' 0) [ln 2 + l n { s i n h ~ ( f i )  ~ ( x +  fl)} +ln{sinh ~ ,x- f l[} ldf l= 

2 f ~  P(fi, 0) I _ l n 2 +  rc rc = - ~- t~=o ((fl) 2s 2hlX-fll + 

+ln(1-e-~l~-~l/a)]dfl, (3.5) 

from which it can be derived that  

daI2 -2P(x,O) 2 d2jf~176 P(fl, O)ln( 1 e_~l~_pl/a~dt~+O(e_~X/h). (3.6) 
d~ ~ h;(x) ~d~2~ ~=o ~ " -  " ~  

We consider the integral 

j~  P(fl' (3.7) 13 = 0) ln(1--e-~lx-~l/h)dfl. 
~=o ~(/~) 

By means of the substitution fl= hT/~+ x, and writing w(x) instead of P(x, O)/g,(x), we get 
h o0 

I3 = ~ i ,  . . . .  /h w(x+ h~/~)ln(1 - e - N ) d 7  

- f 2 / i  h ~ w(x+hT/~)ln(1-e-')dy (3.8) h w(x-hT/rOln(1-e-')d? + s  
7~ 

We expand w(x-hT/rc) and w(x+hT/rC) in a truncated Taylor series around x: 

I3 = hw(x) ~(~/hln(1-e-')d7 + j ~ ln(1-e- ' )dT} + 

1 3 (  ~x/h 
+ 2zc3 j~=oWXX(x-h~9~?(rOy 2 ln(1-e-~)dy 

h3 i~ wxx(x+hO27/~)~ 2 ln (1 -e - ' )a~  
+ 2re 3 )~= o 

Since (see a.o. [10, 12]) 

oo ln (1 -e -~)dT=)  dO = 
~=o ~=o O 6 ' 

(0<  O~< 1, 0 <  02< 1). (3.9) 

(3.1o) 
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eq. (3.9) can be written as 

h 3 ~(,x/h 
13 = -�89 + - -  w~(x-hO~y/Tr)22 ln(1-e-~)d? + 

2re 31_)~= o 

+ f r~ oWxx(x + h027/7c)22 ln(1--e-OdTJ+ O(e-~/h) . (3.11) 

Hence; eq. (3.6) simplifies to 

d 2 Iz 2 ~ w~(x)  h 3 [ (,x/h 
= - a w ( x )  + - U/J ,=oW . . . .  (x-hO17/rc)22 l n (1 -e - ' )d2  + 

+ w . . . .  (x+hO27/Tz)72 ln(1-e-~')d7 +O(e-~/h) .  
?=0 

(3.12) 

Using (3.4) and (3.12) we can replace (2.40) by 

hP=(x, 0)+ 2w(x)-Zh2 wxx(x)+ O(e- ,x/h) = 

= ~---r I~X/hwx~xx(x-hO17/~z)221n(1-e-e)d? 

J - , =  o w . . . . .  ( ~ +  h O ~ 7 / = ) 2  ~ l ~ ( t - e - , ) d r  

The right hand side is majorized by 

(3.13) 

I " ;'r~x/h22 l n (1 -  e-r)d2 + 

0 < ~, < r~x/h 

+ max 
O<g2 < J. 
O<y< m 

)fro 221n(l-e-y)d21 < W . . . .  (X + hO 27/7z = 
7=0 

< 2h4 max w . . . .  ({) ?2 ln(1-e- r )d7  +O(e -=~ /̀h) (3.14) 
= 7Z4 0<~<oo ~,=0 

We compute the integral in (3.14) by partial integration: 

f a e  ~ I ce 1 f ~ l n ( 1 - e - ' ) &  k ~ 3 1 n ( l _ e - , )  - -  ~ 23 d2. 
7=0 ~,=0 3 ~=0 e~- I  

(3.15) 

The integral in the right hand side is equal to rc4/15 (cf. [10, 12]), so we find 

oo 
j 22 ln (1-  e- ' )dy - 7~4 �9 (3.16) 

~=o 45 

Substitution of (3.16) in (3.14) makes clear that the right hand side of (3.13) is majorized 
b y 2h 4 A/45 + 0 (e - ,x/h), where 
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= I o a<xoow . . . . .  ( r  A 

For large x, O(e -=x/h) is negligible. Moreover we assume that A is bounded. Because 
Iw(x)l is bounded (it is proportional to the magnitude of the membrane velocity) and h 
is small (-~0.1 cm), it seems reasonable to neglect the right hand side of (3.13). Writing 
p(x) for P(x, 0), we arrive at 

hpx~ + 2p/(--23 he(p/~)xx = 0.  (3.17) 

It is not possible to prove that the neglect of the right hand side of (3.13) is correct. 
We can, however, compute w(x) numerically from (3.17) and check if w . . . .  (x), thus obtained, 
does not contradict our hypothesis.* The differential equation (3.17) holds good for large x, 
viz. for x>kh with k-~2. It requires two boundary conditions to be solved. The first is, 
in accordance with (2.13): 

Limp(x) = 0.  (3.18) 
x--+ aO 

Another condition for the difference pressure cannot be found for x--,oo, so that the second 
boundary value must be given at x=0 ,  where (3.17) is not valid. It can be expected that 
the average pressure plays an important role in the pressure distribution. In fact all one- 
dimensional models are based on the uniformity of the pressure over a cross-section of a 
scala. Therefore, to get an insight in the nature of the boundary condition at x=0 ,  we 
compute 

from (2.39). The result is: 

~=o Z(c0 dc~+2 ~=0\ -rr - w(fl)dfl, (3.19) 

where w(fl) is written instead of P(fl, O)/~(fi). 
We try to obtain the required boundary condition for (3.17) at x = 0  directly from (2.40). 

With the help of (3.5) and (3.12), eq. (2.40) changes into 

l fh ps(cO_p(o, c 0 ( _ l n  2+nx/hldc~ P(x, O) = -~ ~=o Z(a) 

2 ~ 
- ~f~= o w(fl)( - In  2+  ~x/h + ln l 1 - e~(~-~)/hl)dfi+ O(e-~/h) 

h p~(~)-P(O,a) 2 ~ 
-7r lf~=o Z(a)  ( - l n 2 + ~ x / h ) d a - ~ f ~ = ( f l - x ) w ( f i ) d f l + .  

2 co 
- + (3.20) 

We neglect O(h3wxx)+O(e-=~/h). Since the same neglects were made in the derivation of 
{3.17) and since moreover the remaining part of the right hand side in (3.20) satisfies 
(3.17), the sought boundary value p(O) for (3.17) is equal to this part of P(O, 0): 

p(0) - in2 (" a) + 

+ 2  fe~o ( l n 2  fi)w(fl)dfl+ 2-~-~.w(O). (3.21) 

* Preliminary numerical results justify our assumption. 
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Using (3.19) we get 

P(O, y) (3.22) 
p(0) = 1 -  2h/(3~(0))" 

The Peterson-Bogert equation for a cochlea with constant scala height is [7]: 

hpxx+ 2p/~ = 0,  (3.23) 

which corresponds with (3.17), when we ignore O(h 3 wx,~) in that equation. 
The first boundary condition for eq. (3.23) is (3.18); in the same way as above it is found 

that the other condition" must read 

p (0 )=  P(0, y).  (3.24) 

This could be expected since the main hypothesis of the Peterson-Bogert model is the 
uniformity of the pressure over the cross-section of the scalae. It has been proved here that the 
model, up to its degree of accuracy, is consistent with the two-dimensional theory. 

In the foregoing we assumed that the difference pressure P(0. y) at tlac basal end is known. 
In Section 2, however, the window condition (2.8) was used with the alternative (2.8.a). The 
meaning of the latter condition is that P~(0, y) is prescribed, that of the former that there exists 
a given relation between P(0, y) and P~(0, y). Eq. (2.8.a) can be translated in a condition for 
(3.17) easily; from (2.40) it follows that 

1 ( h sinh(rcx/h)d~ 
P~(x, 0) -h J~ = o P~(O, o 0 cosh(ux/h)- cos(Tze/h) 

,//2 + O(e_ X/h) = e (0, y) + 

From (3.5) it is found that 

h j a~ ~ sinh(rcx/h)d~ 
w(fl) coshQcx/h)- cosh Qc/~/h) 

d12 l fS=oW( fl I f  ~ 1[ ~176 - - w ( f l ) d f i  + ~.  w(f l )d[~ 2 ,lI3 
dx h )dfi h ~=o e=x �9 z dx t-O(e -'~/') 

(3.25) 

(3.26) 

with 13 defined in (3.7). With the same neglects as made in the derivation of (3.17), we 
arrive at 

1 ~ 1 ~ 1 ~o 2h 
- 

Now p(0) is equal to P(0, 0) and p~(0) to Px(0, 0), on the same grounds as used before 
in this section: 

px(O) = P~(O, y) + ~h-(p/~)xlx = (3.28) o~ 

or, written elsewise 

(1 3~o))p~t)2h 5 "0" + 2 ~  p (0 )=  Px(0, y) �9 (3.29) 

When (2.8) is used, we can obtain a condition analogous to (3.29) only when Z(y) is a con- 
stant. In that case (2.8) gives 

Ps(Y)- P(0, y) = Z ex(O, y), (3.30) 

so that we have, utilizing (3.22) and (3.29): 

ps(y}-(1 2h + - 3~-~)P(O)= Z [ (  I -  2h "~)p:,t ) ~0x 2 ~ p ( 0 ) ]  �9 (3.31) 

The corresponding boundary conditions for (3.23) are 
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Ps(Y) p(O) = Zp.~(O), (3.32) 

when (2.8) is used, and 

px(0) = Px(0; Yi, (3.33) 

when (2.8.a) is used. 
Now we have obtained the desired conditions for the ordinary differential equations as a 

function of the prescribed conditions in the two-dimensional case. We emphasize that both 
eqs. (3.17) and (3.23) have, apart from the error of O(h2P/~) and O(h4(P/~)xx) respectively, 
an inaccuracy of O (e-~/h). Consequently neither equation describes the pressure adequately 
in the immediate vicinity (_~ 2 ram) of the windows. This is no limitation of the solution really, 
since the model itself does not represent the cochlea adequately at the basal end. There the 
assumption of equal and constant scala heights is not valid, as was stated already in Section 2. 
Fortunately this area is relatively unimportant from a physical point of view. 

4. Discussion, conclusions and introduction to part II 

We have developed a two-dimensional model for the cochlea; the dimension along the 
width of the membrane was not taken into account. Two fairly simple integral equations, 
(2.39) and (2.40), were obtained. We did not solve these equations numerically, but proceeded 
analytically and found that the integral equations led to a second order ordinary 
differential equation for the transmembrane pressure, viz. (3.17). This equation is shown to 
be more accurate than the Peterson-Bogert equation (3.23), which can be considered as 
representative for one-dimensional models. The agreement as well as the difference between 
the two equations are clear immediately when (3.17) is written in a different form: 

2h hi(l- 
We see that the equations (3.23) and (4.1) coincide for small values of Ih/~l, whereas the 
difference becomes significant when lh/~] = O (1). This result corresponds completely with the 
statement made in [14]. 

It is important to know that for frequencies > 500 Hz the modulus of ff is of order h 
in the region of maximum membrane amplitude, and for frequencies over 10 kHz in the 
entire cochlea. 

It is noteworthy that the results of our model are valid for all frequencies, so that 
no longer a short-wave or a long-wave approximation is required. An increased accuracy 
can be obtained by retaining more terms in the Taylor series in (3.9). Yet this is not 
advisable, since it would lead to an insignificant gain in accuracy at the cost of an increased 
order of the differential equation and consequently more boundary conditions. We will 
return to this subject in part II. 

In this first part the exact approach of the two-dimensional model was outlined. In the 
second part we will describe a heuristic approach which is somewhat less rigorous than the 
exact one, but leads faster to the same results. 

We will also give the results of the numerical calculations of eqs. (3.17) and (3.23). Besides, 
the model will be extended in various ways. First, a variable scala height is considered; second, 
the compressibility and the viscosity are taken into account. Finally, further possible extensions 
will be discussed such as replacement of the membrane by a plate, which seems to be more 
realistic, and extension to a three-dimensional model. 

Appendix 

We introduce a simplified representation of the cochlea, namely a parallelepiped bisected 
by a membrane, the cochlear partition. 
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The rectangular coordinate system is chosen in such a way that x =  0 at the helicotrema, 
x = L  at the windows (ow: oval window, rw: round window) and y=0,  y=b,  z=  - h  and 
z=  h at the walls. 

The scala vestibuli is the part of the figure with z > 0, the scala tympani that with z < 0, 
while the partition is located at z=0 .  It is assumed that the motion of the partition is 
negligible as compared to the dimensions of the cochlea. The time variable is t. Denote 
by P(x, y, z, t) the difference pressure in the fluid and assume that the fluid is incompressible 
and inviscid. 

Then the solution, obtained in [14] for a constant impedance ( of the membrane and 
harmonic oscillations of the input signal reads 

P(x,  y, z, t ) =  ~ ~ B~,B sinh(2~./~x)cos(c~ny/b)cos {z t j (h-  z) }e i~ , (A1) 
~ = 0  /~=0 

with ~, fl = 0, 1, 2, ... Further 

2~, ~ = ( c~n/b ) z + z~ , (A2) 

and the rp are roots of 

ztg(rh) = - 2 / ~ ,  (A3) 

arranged towards increasing fi according to increasing modulus; the quantities 2~, p, r~ and ( 
are complex. The coefficients B~, ~ can be found from the window condition (e.g. P(L,  y, z, t) 
is known); co/2rc is the frequency of the input signal. The impedance ( is given by 

; = p @ ( C - -  mcoZq - ikco), (14) 

where c, m and k are stiffness, mass and resistance per unit area of the membrane and 
p is the density of the fluid. 

We compute the average PA(X, Z, t) of P(x,  y, z, t) over the width of the membrane: 

f �9 
1 b P ( x , y , z ,  t)dy P~(x,  z, t) = ~ ,=o  

= ~ Bo,~ sinh(2o,~X)COS{z~(h-z)}e i~ . (15) 
/~=0 

From (A2) we see that 

120, ~[ = ]z~f. (16) 

Now consider the two-dimensional equivalent of Fig. 4. 
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Fig.5. 

W h e n  ~ is a constant ,  the so lu t ion  can be found  once more  with the m e t h o d  of  separa t ion  
of  variables.  Let  P(x ,  z, t) be the difference pressure  and  cons ider  the fluid as  incompress ib le  
and inviscid. Then the solut ion is: 

P(x ,  z, t ) =  ~ B ( 2 7 ) s i n h ( 2 , x ) c o s { 2 r ( h - z ) }  ei~ , (A7) 
7 = 0  

where the 27 are  roo t s  of  

2 tg (2h)=  - 2 / ~ ,  (A8) 

a r r anged  t owards  increas ing 7 accord ing  to increas ing modu lus ;  ff is given by  (A4) and  
the coefficients B(27) have to be de te rmined  f rom the w indow condi t ion .  

A compar i son  be tween (A5) and  (A7) shows clearly tha t  the na ture  of  the so lu t ion  r emains  
unchanged  by  the neglect  of  the d imens ion  a long  the wid th  of  the membrane .  W h e n  
moreover  the d i rec t ion  pe rpend icu la r  to the m e m b r a n e  is neglected,  the so lu t ion  is v io la ted  
essentially,  as has  been shown in [14]. I t  can be expected  tha t  this  behav iou r  is val id  
as well when the pa r t i t i on  impedance  ~ is dependen t  on the axial  coo rd ina t e  x. 

REFERENCES 

[1] G. yon B6k6sy, Experiments in hearing, McGraw-Hill Book Company Inc. New York (1960). 
[2] B. P. Bogert, Determination of the effects of dissipation in the cochlear partition by means of a network 

representing the basilar membrane, J. Acoust. Soc. Am., 23 (1951) 151-154. 
[3] J. van Dijk, private communication. 
[4] D. H. Klatt and G. E. Peterson, Reexamination of a model of the cochlea, J. A coust. Soc. Am., 40 (1966) 54~51. 
[5] J.G. Krzy2, Problems in complex variable theory, American Elsevier Publishing Company, Inc., New York (1971). 
[6] M. B. Lesser and D. A. Berkley, Fluid Mechanics of the cochlea, part 1, J. Fluid Mech., 51 (1972) 497-512. 
[7] L. C. Peterson and B. P. Bogert, A dynamical theory of the cochlea, J. Acoust. Soc. Am., 22 (1950) 369-381. 
[8] W. Pogorzelski, lntegral Equations and their applications, PWN Warschau (1966). 
[9] O. F. Ranke, Theory of operation of the cochlea: A contribution to the hydrodynamics of the cochlea, 

J. Acoust. Soc. Am., 22 (1950) 772-777. 
[10] I. M. Ryshik and 1. S. Gradstein, Summen-, Produkt- und Integraltafeln, VEB Deutschen Verlag der 

Wissenschaften, Berlin (1957). 
[l 1] W. M. Siebert, Ranke revisited: a simple short wave cochlear model, J. Acoust. Soc. Am., 56 (1974) 594~500. 
[12] M. R. Spiegel, Mathematical Handbook of tables and formulas, Schaum's Outline series, McGraw-Hill Book 

Company Inc., New York (1968). 
[13] C. R. Steele, Cochlear Mechanics, to appear in the Handbook of Sensory Physiology, Vol. 5, W. D. Keidel and 

W. D. Neff, Eds, Springer Berlin. 
[14] M. A. Viergever and J. J. Kalker, On the adequacy of the Peterson-Bogert.model and on the effects of 

viscosity in cochlear dynamics, J. Eng. Math., 8 (1974) 149-156. 
[15] M. A. Viergever and J. J. Kalker, Localization of non-linearities in the cochlea, J. Eng. Math., 9 (1975) 11 20. 
[16] E. G. Wever, Theory of hearing, John Wiley & Sons, Inc., New York (1949). 
1-17] J. Zwislocki-Mogcicki, Theorie der Sneckenmechanik, Acta Oto Laryngologica, Suppl. 72, Ziirich (1948). 
[18] J. Zwislocki, Review of recent mathematical theories of cochlear dynamics, J. Acoust. Soc. Am., 25 (1953) 743-751. 

Journal of Engineering Math., Vol, 9 (1975) 353-36: 


